skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bao, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Rotating miniature magnetic swimmers are de-vices that could navigate within the bloodstream to access remote locations of the body and perform minimally invasive procedures. The rotational movement could be used, for example, to abrade a pulmonary embolus. Some regions, such as the heart, are challenging to navigate. Cardiac and respiratory motions of the heart combined with a fast and variable blood flow necessitate a highly agile swimmer. This swimmer should minimize contact with the walls of the blood vessels and the cardiac structures to mitigate the risk of complications. This paper presents experimental tests of a millimeter-scale magnetic helical swimmer navigating in a blood-mimicking solution and describes its turning capabilities. The step-out frequency and the position error were measured for different values of turn radius. The paper also introduces rapid movements that increase the swimmer's agility and demonstrates these experimentally on a complex 3D trajectory. 
    more » « less
  2. Small-scale robots have great potential in medicine, micro-assembly and many other areas. For example, robots containing iron can be steered using the magnetic gradient generated by MRI scanners. Since the gradient is approximately the same everywhere inside the scanner, each robot receives the same input and therefore they all are subjected to the same force. A similar technique can be used with rotating magnetic fields. Each robot receives the same inputs, making motion planning challenging. This paper uses a Rapidly Exploring Random Tree (RRT) to plan paths that deliver multiple robots to goal positions by using obstacles to break the actuation symmetry. 
    more » « less